## Chapter 16 Problem $37{ }^{\dagger}$

## Given

$P=100 \mathrm{~W}$
$T=3.0 \mathrm{kK}=3000 \mathrm{~K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot K^{4}$

## Solution

Find the surface area of the filament.
Stefan-Boltzmann's law states

$$
P=\epsilon \sigma A T^{4}
$$

Assuming the emissivity of the filament is 1 , solve for $A$.

$$
A=\frac{P}{\sigma T^{4}}=\frac{100 \mathrm{~W}}{\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot K^{4}\right)(3000 K)^{4}}=2.18 \times 10^{-5} \mathrm{~m}^{2}
$$

Convert to $\mathrm{mm}^{2}$

$$
A=\left(2.18 \times 10^{-5} \mathrm{~m}^{2}\right)\left(\frac{1000 \mathrm{~mm}}{1.000 \mathrm{~m}}\right)^{2}=21.8 \mathrm{~mm}^{2}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

