\qquad

A muon is a subatomic particle with a rest mass of $1.88 \times 10^{-28} \mathrm{~kg}$ and a half-life of 2.20 s . During an experiment moving muons are found to have a half-life of 15 s .
a) What is the velocity of the muons?

Time dilation is occurring and the Lorentz factor is

$$
\begin{aligned}
& t^{\prime}=\frac{t}{\gamma} \\
& \gamma=\frac{t}{t^{\prime}}=\frac{15.0 s}{2.20 s}=6.82 \\
& \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}
\end{aligned}
$$

With algebra find velocity

$$
\begin{aligned}
& \gamma^{2}=\frac{1}{1-(v / c)^{2}} \\
& \frac{1}{\gamma^{2}}=1-(v / c)^{2} \\
& \frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \\
& v=c \sqrt{1-\frac{1}{\gamma^{2}}}=c \sqrt{1-\frac{1}{6.82^{2}}}=0.989 c
\end{aligned}
$$

b) What is the momentum of the muons?

The relativistic momentum equation gives

$$
p=\gamma m c=6.82\left(1.88 \times 10^{-28} \mathrm{~kg}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=3.85 \times 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

