\qquad

Water is placed in a styrofoam cup with a styrofoam lid. Assume the cup and lid form a cylinder of radius 4.00 cm , height of 12.0 cm , and wall thickness of 0.500 cm . The water's initial temperure is $95^{\circ} \mathrm{C}$ and the surroundings are at $20^{\circ} \mathrm{C}$.
a) What is the rate of heat flow through the styrofoam cup? (The thermal conductivity of styrofoam is $0.029 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$.) (6 pts)
Find the surface area of the cup. The wall will be circumference time height and the lid and base will be the area of a circle.

$$
\begin{aligned}
& A=\pi r^{2}+\pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r h=2 \pi r(r+h) \\
& A=2 \pi(0.040 m)(0.040 m+0.120 m)=0.0402 m^{2}
\end{aligned}
$$

Now calculate the heat flow through the cup

$$
\begin{aligned}
& H=-k_{t} A \frac{\Delta T}{\Delta x} \\
& H=-(0.029 \mathrm{~W} / \mathrm{mK})\left(0.0402 \mathrm{~m}^{2}\right) \frac{\left(20^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}\right)}{(0.0050 \mathrm{~m})}=17.5 \mathrm{~W}
\end{aligned}
$$

b) Assuming the rate of heat flow calculated above is constant, how long does it take the temperature of the water to drop to $90^{\circ} \mathrm{C}$? (The mass of water that fits in this cup is 603 g .) (3 pts)
Rate of heat flow is the change of heat over the change in time. Therefore,

$$
H=\frac{\Delta Q}{\Delta t}=\frac{m c \Delta T}{\Delta t}
$$

Solving for the change of time gives

$$
\Delta t=\frac{m c \Delta T}{H}=\frac{(603 \mathrm{~g})(4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C})(95-90)}{17.5 \mathrm{~W}}=720 \mathrm{~s}
$$

This time is equal to 12 minutes.
c) Due to the assumption of constant heat flow, is the time calculated in part b smaller or larger than the actual time for the water to reach $90^{\circ} \mathrm{C}$? (1 pt) As the coffee cools the rate of heat flow will go down. Therefore, the time in part b is smaller than the actual time.

