Chapter 7 Problem $65{ }^{\dagger}$

Solution

Find the potential difference between the shells.
Since the inner shell has $+Q$ charge and the outer shell has $-Q$ charge, all the electric field in the system is located between the two shells. By Gauss's law for a spherical surface inside the inner shell, there is no enclosed charge; therefore, no electric field. Likewise, for a spherical shell outside the outer shell, it will encompass $(+Q)+(-Q)=0$ charge. Therefore, there is no electric field here either. Since the shells are spherically symmetry, the electric field between them is

$$
\vec{E}=\frac{k q_{e n c}}{r^{2}} \hat{r}
$$

Notice, the enclosed charge is $+Q$. The voltage between the shells is then the integral going from $r_{0}=a$ to $r_{f}=b$.

$$
\begin{aligned}
& \Delta V=-\int \vec{E} \cdot d \vec{r}=-\int_{a}^{b}\left(\frac{k Q}{r^{2}} \hat{r}\right) \cdot d r \hat{r} \\
& \Delta V=-\int_{a}^{b} \frac{k Q}{r^{2}} d r=-k Q \int_{a}^{b} \frac{1}{r^{2}} d r \\
& \Delta V=-k Q\left(\left.\frac{-1}{r}\right|_{a} ^{b}\right. \\
& \Delta V=k Q\left(\frac{1}{b}-\frac{1}{a}\right)
\end{aligned}
$$

The way the integral was set up, we are going from $r=a$ to $r=b$. This is in the same direction as the electic field. Therefore, the potential difference will be negative. Since $b>a$, this is consistent with what we would expect. If we want a positive potential, we should swap the limits and get

$$
\Delta V=k Q\left(\frac{1}{a}-\frac{1}{b}\right)
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

