## Chapter 7 Problem $56^{\dagger}$

## Given

$V=-x y^{2} z+4 x y$

## Solution

Find the electic field in this region.
Going from electric potential to electric field, you need to find the negative gradient of the potential given by the relationship

$$
\vec{E}=-\nabla V
$$

In Cartesian coordinate the operator expands out to

$$
\vec{E}=-\frac{\partial V}{\partial x} \hat{i}-\frac{\partial V}{\partial y} \hat{j}-\frac{\partial V}{\partial z} \hat{k}
$$

The partial derivative symbol means take an explicit derivative of the variable. Treat the other variables in the expression as a constant. This means you don't have to perform the chain rule to complete the derivative. Substitute in our expression and take the appropriate partials.

$$
\begin{aligned}
\vec{E} & =-\frac{\partial\left(-x y^{2} z+4 x y\right)}{\partial x} \hat{i}-\frac{\partial\left(-x y^{2} z+4 x y\right)}{\partial y} \hat{j}-\frac{\partial\left(-x y^{2} z+4 x y\right)}{\partial z} \hat{k} \\
\vec{E} & =-\left(-y^{2} z+4 y\right) \hat{i}-(-2 x y z+4 x) \hat{j}-\left(-x y^{2}\right) \hat{k} \\
\vec{E} & =\left(y^{2} z-4 y\right) \hat{i}+(2 x y z-4 x) \hat{j}+\left(x y^{2}\right) \hat{k}
\end{aligned}
$$

[^0]
[^0]:    ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

