Chapter 7 Problem $50{ }^{\dagger}$

Given

$D=0.200 \mathrm{~m}$
$V=25.0 \mathrm{kV}=2.50 \times 10^{4} \mathrm{~V}$
$k=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
$m=0.100 \mathrm{mg}=1.00 \times 10^{-4} \mathrm{~kg}$
$v=10.0 \mathrm{~m} / \mathrm{s}$

Solution

a) Find the charge on the sphere.

The diameter is given, so the radius is

$$
r=\frac{D}{2}=\frac{0.200 \mathrm{~m}}{2}=0.100 \mathrm{~m}
$$

For a spherically shaped object, the voltage is

$$
V=\frac{k q}{r}
$$

Solving for charge gives

$$
q=\frac{r V}{k}
$$

Substituting in the appropriate values gives

$$
q=\frac{(0.100 \mathrm{~m})\left(2.50 \times 10^{4} V\right)}{8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}}=2.78 \times 10^{-7} \mathrm{C}
$$

This is $0.278 \mu C$.
b) Find the charge on a 0.100 mg paint drop to arrive with a speed of $10.0 \mathrm{~m} / \mathrm{s}$.

Voltage is related to potential energy by the relationship

$$
\Delta U=q \Delta V
$$

Since the object to be painted is grounded, or at $0 V$, the potential difference is just the voltage of the sprayer's sphere. All of the energy is converted to kinetic energy, so

$$
\begin{aligned}
& U=K \\
& q V=\frac{1}{2} m v^{2}
\end{aligned}
$$

Solving for q gives

$$
q=\frac{m v^{2}}{q V}=\frac{\left(1.00 \times 10^{-4} \mathrm{~kg}\right)(10.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(2.50 \times 10^{4} \mathrm{~V}\right)}=2.00 \times 10^{-7} \mathrm{C}
$$

This is $0.200 \mu C$.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

