Chapter 7 Problem 34^{\dagger}

Given

$q_{e}=-1.60 \times 10^{-19} \mathrm{C}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$\Delta V=40 \mathrm{kV}=4.0 \times 10^{4} \mathrm{~V}$

Solution

Find the velocity of electrons accelerated through this potential difference.
The potential energy change for each electron is

$$
\Delta U=q_{e} \Delta V=\left(-1.60 \times 10^{-19} C\right)\left(4.0 \times 10^{4} V\right)=-6.4 \times 10^{-15} J
$$

This loss of energy results in a gain of kinetic energy. Therefore,

$$
\Delta K=6.4 \times 10^{-15} J
$$

If the electron is initially at rest, then

$$
\Delta K=\frac{1}{2} m v^{2}
$$

And the velocity is

$$
v=\sqrt{\frac{2 \Delta K}{m}}
$$

Substituting in values gives

$$
v=\sqrt{\frac{2\left(6.4 \times 10^{-15} \mathrm{~J}\right)}{9.11 \times 10^{-31} \mathrm{~kg}}}=1.19 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

This is about 40% the speed of light. Due to relativistic effects, the actual speed would be slightly less than this.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

