Chapter 7 Problem $31{ }^{\dagger}$

Given

$q_{p}=1.60 \times 10^{-19} C$
$q_{e}=-1.60 \times 10^{-19} \mathrm{C}$
$r=0.529 \times 10^{-10} \mathrm{~m}=5.29 \times 10^{-11} \mathrm{~m}$
$k=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Solution

Find the work done as an electron moves from infinity to the average distance between a proton and electron in a hydrogen atom.
Since the electric field of the proton is spherically symmetry, it equals

$$
\vec{E}=\frac{k q_{p}}{r^{2}} \hat{r}
$$

The force on the electron is then

$$
\vec{F}=\frac{k q_{p} q_{e}}{r^{2}} \hat{r}
$$

The work done is then the integral as the elecctron moves from infinity to the distance r .

$$
\begin{aligned}
W & =\int \vec{F} \cdot d \vec{r}=\int_{\infty}^{r}\left(\frac{k q_{p} q_{e}}{r^{2}} \hat{r}\right) \cdot d r \hat{r} \\
W & =\int_{\infty}^{r} \frac{k q_{p} q_{e}}{r^{2}} d r=k q_{p} q_{e} \int_{\infty}^{r} \frac{1}{r^{2}} d r \\
W & =k q_{p} q_{e}\left(\left.\frac{-1}{r}\right|_{\infty} ^{r}\right. \\
W & =k q_{p} q_{e}\left(\frac{-1}{r}-\frac{-1}{\infty}\right)=\frac{-k q_{p} q_{e}}{r}
\end{aligned}
$$

Now substitute in the appropriate values gives

$$
\begin{aligned}
& W=\frac{-\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(-1.60 \times 10^{-19} \mathrm{C}\right)}{5.29 \times 10^{-11} \mathrm{~m}} \\
& W=4.36 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Notice the work is positive. The electric force is directed towards the proton, attraction, and the electron is moving in the same direction. A negative sign appeared in the integral, but is cancelled by the negative charge of the electron. This amount of energy is small, so let's convert it to electron-volts.

$$
W=\left(4.35 \times 10^{-18} J\right)\left(\frac{1 \mathrm{eV}}{1.6 \times 10^{-19} J}\right)=27.2 \mathrm{eV}
$$

Since the electron is in 'orbit' around the proton (an antiquated motion, but useful), half of the energy from this work is kinetic energy and half is potential energy. As a result, the potential energy of the electron bound to the proton is 13.6 eV , which is the ionization energy of the hydrogen atom.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

