
Chapter 6 Problem 86 †

Solution
Find the electric field at point P.

Since the point charges are spheres and the point of interest is beyond the surface of the spheres, we
know the electric field will be the same as that for a point charge given by Coulomb’s law.
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Since the magnitude of the charges are not given, we must express them in terms of the charge density
and the radius of the charge.
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Let’s now focus on each charge separately and find the electric field vector at point P.

The magnitude of the electric field for charge 1 is
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Orient the x-axis as the connecting line between the two charges. The magnitude can now be broken into
an x and y component.
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Now to the hard part, calculating the magnitude and vector components due to charge 2.

First, we need to find the distance between charge 2 and the point P. Using the law of cosines, we get
this distance. (Notice: If the angle θ were 90◦, then the distance would be the hypotenus, but it isn’t
necessaryly so.)

r22 = r2 + a2 − 2ar cos θ (Eq.2)

The magnitude of the electric field is then
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Now we need to break this magnitude into x and y components by introducing a second angle φ. Since
the electric field for the second charge is directed towards the II quadrant in the proximity of point P, the
electric field vector for the second charge is
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(− cosφî+ sinφĵ) (Eq.3)
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We have introduced two variables, φ and r2. It would be useful to get rid of them. Consider the following
diagram.

Notice that

a = r cos θ + r2 cosφ

Therefore,
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r2

Also

r sin θ = r2 sinφ

and
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Substituting these relationships into Eq. 3 gives
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Finally, let’s get rid of r2 using Eq. 2.

r2 = (r2 + a2 − 2ar cos θ)1/2

We now have
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)
Simplifying with algebra gives
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Now combine this electric field with that of charge 1, given in Eq. 1 and we have
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