Chapter 6 Problem $86{ }^{\dagger}$

Solution

Find the electric field at point P .
Since the point charges are spheres and the point of interest is beyond the surface of the spheres, we know the electric field will be the same as that for a point charge given by Coulomb's law.

$$
\vec{E}=k \frac{q}{r^{2}} \hat{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{r}
$$

Since the magnitude of the charges are not given, we must express them in terms of the charge density and the radius of the charge.

$$
Q=\frac{4}{3} \pi r^{3} \rho
$$

Let's now focus on each charge separately and find the electric field vector at point P .
The magnitude of the electric field for charge 1 is

$$
E_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{1}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{4 / 3 \pi R_{1}^{3} \rho_{1}}{r^{2}}\right)=\frac{R_{1}^{3} \rho_{1}}{3 \epsilon_{0} r^{2}}
$$

Orient the x -axis as the connecting line between the two charges. The magnitude can now be broken into an x and y component.

$$
\begin{equation*}
\vec{E}_{1}=\left(\frac{R_{1}^{3} \rho_{1}}{3 \epsilon_{0} r^{2}}\right)(\cos \theta \hat{i}+\sin \theta \hat{j}) \tag{Eq.1}
\end{equation*}
$$

Now to the hard part, calculating the magnitude and vector components due to charge 2 .
First, we need to find the distance between charge 2 and the point P . Using the law of cosines, we get this distance. (Notice: If the angle θ were 90°, then the distance would be the hypotenus, but it isn't necessaryly so.)

$$
\begin{equation*}
r_{2}^{2}=r^{2}+a^{2}-2 a r \cos \theta \tag{Eq.2}
\end{equation*}
$$

The magnitude of the electric field is then

$$
E_{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{2}}{r_{2}^{2}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{4 / 3 \pi R_{2}^{3} \rho_{2}}{r^{2}+a^{2}-2 a r \cos \theta}\right)=\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)}
$$

Now we need to break this magnitude into x and y components by introducing a second angle ϕ. Since the electric field for the second charge is directed towards the II quadrant in the proximity of point P , the electric field vector for the second charge is

$$
\begin{equation*}
\vec{E}_{2}=\left(\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)}\right)(-\cos \phi \hat{i}+\sin \phi \hat{j}) \tag{Eq.3}
\end{equation*}
$$

[^0]We have introduced two variables, ϕ and r_{2}. It would be useful to get rid of them. Consider the following diagram.

Notice that

$$
a=r \cos \theta+r_{2} \cos \phi
$$

Therefore,

$$
\cos \phi=\frac{a-r \cos \theta}{r_{2}}
$$

Also

$$
r \sin \theta=r_{2} \sin \phi
$$

and

$$
\sin \phi=\frac{r \sin \theta}{r_{2}}
$$

Substituting these relationships into Eq. 3 gives

$$
\vec{E}_{2}=\left(\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)}\right)\left(-\frac{a-r \cos \theta}{r_{2}} \hat{i}+\frac{r \sin \theta}{r_{2}} \hat{j}\right)
$$

Finally, let's get rid of r_{2} using Eq. 2.

$$
r_{2}=\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{1 / 2}
$$

We now have

$$
\vec{E}_{2}=\left(\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)}\right)\left(-\frac{a-r \cos \theta}{\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{1 / 2}} \hat{i}+\frac{r \sin \theta}{\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{1 / 2}} \hat{j}\right)
$$

Simplifying with algebra gives

$$
\vec{E}_{2}=\left(\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{3 / 2}}\right)((-a+r \cos \theta) \hat{i}+r \sin \theta \hat{j})
$$

Now combine this electric field with that of charge 1, given in Eq. 1 and we have

$$
\begin{aligned}
\vec{E} & =\vec{E}_{1}+\vec{E}_{2}=\left(\frac{R_{1}^{3} \rho_{1}}{3 \epsilon_{0} r^{2}}\right)(\cos \theta \hat{i}+\sin \theta \hat{j})+\left(\frac{R_{2}^{3} \rho_{2}}{3 \epsilon_{0}\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{3 / 2}}\right)((-a+r \cos \theta) \hat{i}+r \sin \theta \hat{j}) \\
\vec{E} & =\left(\frac{R_{1}^{3} \rho_{1} \cos \theta}{r^{2}}+\frac{R_{2}^{3} \rho_{2}(-a+r \cos \theta)}{\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{3 / 2}}\right) \frac{\hat{i}}{3 \epsilon_{0}}+\left(\frac{R_{1}^{3} \rho_{1} \sin \theta}{r^{2}}+\frac{R_{2}^{3} \rho_{2} r \sin \theta}{\left(r^{2}+a^{2}-2 a r \cos \theta\right)^{3 / 2}}\right) \frac{\hat{j}}{3 \epsilon_{0}}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

