Chapter 6 Problem $44{ }^{\dagger}$

Given

$Q=-30 \mu C=-30.0 \times 10^{-6} C$
$R=10.0 \mathrm{~cm}=0.100 \mathrm{~m}$

Solution

a) Find the electric field at $r=2.0 \mathrm{~cm}$.

Since this radius is inside the spherical charge distribution, we need to determine how much of the total charge is inside this sphere. The charge density is

$$
\begin{equation*}
\rho=\frac{Q}{\frac{4}{3} \pi R^{3}}=\frac{-30.0 \times 10^{-6} C}{\frac{4}{3} \pi(0.100 \mathrm{~m})^{3}}=-7.16 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3} \tag{Eq.1}
\end{equation*}
$$

The charge inside the Gaussian surface is

$$
q_{e n c}=\rho V=\rho \frac{4}{3} \pi r^{3}=\left(-7.16 \times 10^{-3} C\right) \frac{4}{3} \pi(0.020 m)^{3}=-2.40 \times 10^{-7} C
$$

Now from Gauss' Law

$$
\oint_{S} \vec{E} \cdot \vec{A}=\Phi=\frac{q_{e n c}}{\epsilon_{0}}
$$

We are dealing with spherical symmetry, therefore the electric field is a constant over the integral and the total surface area is that of a sphere. Therefore,

$$
E 4 \pi r^{2}=\frac{q_{e n c}}{\epsilon_{0}}
$$

The electric field is then

$$
\begin{equation*}
E=\frac{q_{e n c}}{4 \pi \epsilon_{0} r^{2}} \tag{Eq.2}
\end{equation*}
$$

Substituting in our values gives

$$
\begin{aligned}
& E=\frac{-2.40 \times 10^{-7} C}{4 \pi\left(8.85 \times 10^{-12} C^{2} / N m^{2}\right)(0.020 m)^{2}} \\
& E=-5.40 \times 10^{6} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

The negative sign means the electric field is entering the surface not leaving. This is opposite of what is illustrated in the provided diagram.

[^0]b) What is the electric field at $r=5.0 \mathrm{~cm}$.

Find the charge inside the surface by multiplying the charge density calculated in Eq. (1) and multiply by the volume.

$$
q_{e n c}=\rho V=\rho_{3}^{4} \pi r^{3}=\left(-7.16 \times 10^{-3} C\right) \frac{4}{3} \pi(0.050 m)^{3}=2.40 \times 10^{-7} C=-3.75 \times 10^{-6} C
$$

Using Eq. (2) we have an electric field of

$$
\begin{aligned}
& E=\frac{-3.75 \times 10^{-6} C}{4 \pi\left(8.85 \times 10^{-12} C^{2} / N m^{2}\right)(0.050 m)^{2}} \\
& E=-1.35 \times 10^{7} N / C
\end{aligned}
$$

c) What is the electric field at $r=20.0 \mathrm{~cm}$?

This distance is beyond the surface of the charge distribution. Therefore, the enclosed charge is the same as the total charge. Now use Eq. (2) and calculate the electric field.

$$
\begin{aligned}
& E=\frac{-3.0 \times 10^{-5} C}{4 \pi\left(8.85 \times 10^{-12} C^{2} / \mathrm{Nm}^{2}\right)(0.20 \mathrm{~m})^{2}} \\
& E=-6.74 \times 10^{6} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

