Chapter 6 Problem $27{ }^{\dagger}$

Given

$\vec{E}=\{4.0 \hat{j}+3.0 \hat{k}\} \times 10^{3} \mathrm{~N} / \mathrm{C}$
$r=2.0 \mathrm{~m}$

Solution

a) Find the flux through a circle that lies in the xy-plane.

The area of the circle is

$$
A=\pi r^{2}=\pi(2.0 m)^{2}=12.6 \mathrm{~m}^{2}
$$

Area is a vector and the direction is perpendicular to the plane of the circle. Since it lies in the xy-plane, then the vector is in the \hat{k} direction. It could either be positive or negative, but I will make it positive. Now the flux through the circle is

$$
\Phi=\vec{E} \cdot \vec{A}
$$

The flux is then

$$
\begin{aligned}
& \Phi=\left(\{4.0 \hat{j}+3.0 \hat{k}\} \times 10^{3} \mathrm{~N} / \mathrm{C}\right) \cdot\left(12.6 \hat{k} \mathrm{~m}^{2}\right) \\
& \Phi=\left(3.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\right)\left(12.6 \mathrm{~m}^{2}\right)=3.8 \times 10^{4} \mathrm{Nm}^{2} / C
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

