Chapter 5 Problem $94{ }^{\dagger}$

Given

$E=4.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$
$\vec{v}_{0}=1.5 \times 10^{7} \hat{i} \mathrm{~m} / \mathrm{s}$
$\Delta x=12.0 \mathrm{~cm}=0.120 \mathrm{~m}$
$q_{p}=1.60 \times 10^{-19} C$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Solution

What distance is the proton deflected downward?
The electric force is in the negative y-directon.

$$
F=q E
$$

The acceleration of the proton is then

$$
\begin{aligned}
& a_{p}=\frac{F_{p}}{m_{p}}=\frac{q E}{m_{p}}=\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(4.0 \times 10^{5} \mathrm{~N} / \mathrm{C}\right)}{1.67 \times 10^{-27} \mathrm{~kg}} \\
& a_{p}=3.83 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The proton is moving in the x -direction at a constant speed, so the time in the chamber is

$$
\begin{aligned}
& \Delta x=v_{0} t \\
& t=\frac{\Delta x}{v_{0}}=\frac{0.120 \mathrm{~m}}{1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}}=8.0 \times 10^{-9} \mathrm{~s}
\end{aligned}
$$

With no initial velocity in the y-direction, the displacement by the time it leaves the chamber is

$$
\begin{aligned}
& y=\frac{1}{2} a t^{2}=\frac{1}{2}\left(3.83 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)\left(8.0 \times 10^{-9} \mathrm{~s}\right)^{2} \\
& y=1.23 \times 10^{-3} \mathrm{~m}=1.23 \mathrm{~mm}
\end{aligned}
$$

