Chapter 5 Problem $87{ }^{\dagger}$

Solution

The charge is uniformly distributed over the rod. Therefore, $\lambda=q / L$.
The electric field for a continuous linear charge on this wire is

$$
\vec{E}=\int_{x=-L / 2}^{x=L / 2}\left(\frac{k d q}{r^{2}} \hat{r}\right)
$$

The infinitesimal charge is related to the infinitesimal length along the charged wire by the following relationship.

$$
d q=\lambda d x=\frac{q d x}{L}
$$

Depending on the position of our point of interest, how we define r and \hat{r} will change. Eventually everything needs to be defined in terms of the variable of integration, x.

$$
\vec{E}=\int_{x=-L / 2}^{x=L / 2}\left(\frac{k \lambda d x}{r^{2}} \hat{r}\right)=k \lambda \int_{x=-L / 2}^{x=L / 2}\left(\frac{d x}{r^{2}} \hat{r}\right)
$$

Now we can look at the two cases.
What is the electric field at P_{1} ?
In this case, the vector r goes from a location on the wire a distance, x, from the origin to a point that is $a / 2$ above the middle of the wire in the x-direction. Therefore,

$$
\vec{r}=-x \hat{i}+a / 2 \hat{j}
$$

The magnitude is

$$
r=\sqrt{(-x)^{2}+(a / 2)^{2}}=\sqrt{x^{2}+a^{2} / 4}
$$

The unit vector is

$$
\hat{r}=\frac{\vec{r}}{r}=\frac{-x \hat{i}+a / 2 \hat{j}}{\sqrt{x^{2}+a^{2} / 4}}
$$

The integral can now be written as

[^0]This is really two integrals. One that involves the \hat{i} term and one that involves the \hat{j} term.

$$
\vec{E}=k \lambda \int_{x=-L / 2}^{x=L / 2}\left(\frac{(-x \hat{i}) d x}{\left(x^{2}+a^{2} / 4\right)^{3 / 2}}\right)+k \lambda \int_{x=-L / 2}^{x=L / 2}\left(\frac{(a / 2 \hat{j}) d x}{\left(x^{2}+a^{2} / 4\right)^{3 / 2}}\right)
$$

The \hat{i} term equals zero since the point of interest is centered over the wire. Any field on the right-hand side will cancel out the left-hand side. (If you want to prove this to yourself mathematically, you can do a u-substitution with $u=x^{2}+a^{2} / 4$.) The \hat{j} term does not cancel because every location along the wire is contributing an upward electric field. This integral is solved using a tangent substitution. The result of the integral gives

$$
\begin{aligned}
\vec{E} & =k \lambda(a / 2) \hat{j} \int_{x=-L / 2}^{x=L / 2}\left(\frac{d x}{{\sqrt{x^{2}+a^{2} / 4}}^{3 / 2}}\right)=k \lambda(a / 2) \hat{j}\left(\left.\frac{x}{(a / 2)^{2}\left(x^{2}+a^{2} / 4\right)^{1 / 2}}\right|_{-L / 2} ^{L / 2}\right. \\
\vec{E} & =k \lambda(2 / a) \hat{j}\left(\frac{L / 2}{\left((L / 2)^{2}+a^{2} / 4\right)^{1 / 2}}-\frac{-L / 2}{\left((-L / 2)^{2}+a^{2} / 4\right)^{1 / 2}}\right) \\
\vec{E} & =k \lambda(2 / a) \hat{j}\left(\frac{2(L / 2)}{\left(L^{2} / 4+a^{2} / 4\right)^{1 / 2}}\right)=k \lambda(2 / a) \hat{j}\left(\frac{L}{\left(\left(L^{2}+a^{2}\right) / 4\right)^{1 / 2}}\right) \\
\vec{E} & =k \lambda(2 / a) \hat{j}\left(\frac{L}{(1 / 2)\left(L^{2}+a^{2}\right)^{1 / 2}}\right) \\
\vec{E} & =\frac{4 k \lambda L}{a\left(L^{2}+a^{2}\right)^{1 / 2}} \hat{j}
\end{aligned}
$$

Now $\lambda=q / L$ and $k=\frac{1}{4 \pi \epsilon_{0}}$, then

$$
\begin{aligned}
\vec{E} & =\frac{4\left(1 / 4 \pi \epsilon_{0}\right)(q / L) L}{a\left(L^{2}+a^{2}\right)^{1 / 2}} \hat{j} \\
\vec{E} & =\frac{q}{\pi \epsilon_{0} a\left(L^{2}+a^{2}\right)^{1 / 2}} \hat{j}
\end{aligned}
$$

Now we can move on to the next case.
What is the electric field at P_{2} ?
In this case, the vector r goes from a location on the wire a distance, x, from the origin to a point that is $L / 2+a$ from the origin in the x -direction. Therefore,

$$
\vec{r}=(L / 2+a) \hat{i}-x \hat{i}=(L / 2+a-x) \hat{i}
$$

The magnitude is

$$
r=L / 2+a-x
$$

The unit vector is

$$
\hat{r}=\hat{i}
$$

The integral can now be written as

$$
\vec{E}=k \lambda \int_{x=-L / 2}^{x=L / 2}\left(\frac{d x}{(L / 2+a-x)^{2}} \hat{i}\right)
$$

Do a u-substitution with

$$
\begin{aligned}
& u=L / 2+a-x \\
& d u=-d x
\end{aligned}
$$

The lower limit becomes

$$
u_{0}=L / 2+a-(-L / 2)=L+a
$$

The upper limit becomes

$$
u_{f}=L / 2+a-(L / 2)=a
$$

The transformed integral is now

$$
\begin{aligned}
\vec{E} & =k \lambda \int_{u=L+a}^{u=a}\left(\frac{-d u}{u^{2}} \hat{i}\right) \\
\vec{E} & =-k \lambda \hat{i}\left(\left.\frac{-1}{u}\right|_{L+a} ^{a}=k \lambda \hat{i}\left(\frac{1}{a}-\frac{1}{L+a}\right)\right.
\end{aligned}
$$

Now $\lambda=q / L$ and $k=\frac{1}{4 \pi \epsilon_{0}}$, then

$$
\vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{L} \hat{i}\left(\frac{1}{a}-\frac{1}{L+a}\right)
$$

or to match the solution in the textbook

$$
\vec{E}=\frac{-q}{4 \pi \epsilon_{0} L} \hat{i}\left(\frac{1}{L+a}-\frac{1}{a}\right)
$$

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

