Chapter 5 Problem $68{ }^{\dagger}$

Given

$k=\frac{1}{4 \pi \epsilon_{0}}$

Solution

Find how θ depends on l and q.
First a free-body diagram needs to be generated. There are three forces: one due to electric repulsion to the right, one due to gravity in the downward direction and the last due to tension in the string to the upper-left. Using the angle designated in the diagram and let the positive x -axis be to the right and positive y-axis in the upward direction, then by Newton's 2 nd law we have the following equation.

$$
\Sigma \vec{F}_{i}=m a=\vec{F}_{T}+\vec{F}_{e}+\vec{F}_{g}
$$

Now

$$
\begin{aligned}
& \vec{F}_{T}=-T \sin \theta \hat{i}+T \cos \theta \hat{j} \\
& \vec{F}_{e}=k \frac{q_{1} q_{2}}{r^{2}} \hat{i}=k \frac{q q}{r^{2}} \hat{i}=k \frac{q^{2}}{r^{2}} \hat{i} \\
& \vec{F}_{g}=-m g \hat{j}
\end{aligned}
$$

Substitute the individual forces into Newton's 2nd law and set the acceleration equal to zero (this is a statics problem).

$$
m a=0=-T \sin \theta \hat{i}+T \cos \theta \hat{j}+k \frac{q^{2}}{r^{2}} \hat{i}-m g \hat{j}
$$

In the x -direction we get

$$
0=-T \sin \theta+k \frac{q^{2}}{r^{2}}
$$

or

$$
T \sin \theta=k \frac{q^{2}}{r^{2}}
$$

[^0]In the y-direction we get

$$
0=T \cos \theta-m g
$$

or

$$
T \cos \theta=m g
$$

Dividing the x -direction equation by the y -direction equation we get

$$
\frac{T \sin \theta}{T \cos \theta}=\frac{k \frac{q^{2}}{r^{2}}}{m g}
$$

Simplifying this equation gives

$$
\begin{align*}
& \frac{\sin \theta}{\cos \theta}=k \frac{q^{2}}{m g r^{2}} \\
& \tan \theta=k \frac{q^{2}}{m g r^{2}} \tag{Eq.1}
\end{align*}
$$

Now r is the distance between the two balls and $r=2 x . x$ is the opposite side of a right triangle. Therefore,

$$
\sin \theta=\frac{x}{l}=\frac{r / 2}{l}
$$

Therefore,

$$
r=2 l \sin \theta
$$

Substitute this into equation (1) and replace k with $1 / 4 \pi \epsilon_{0}$.

$$
\tan \theta=\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{q^{2}}{m g(2 l \sin \theta)^{2}}
$$

Simplifying gives

$$
\begin{aligned}
& \sin (\theta)^{2} \tan (\theta)=\frac{q^{2}}{\left(4 \pi \epsilon_{0}\right) m g 4 l^{2}} \\
& \sin (\theta)^{2} \tan (\theta)=\frac{q^{2}}{16 \pi \epsilon_{0} g l^{2} m}
\end{aligned}
$$

[^0]: †Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

