Chapter 5 Problem $64{ }^{\dagger}$

Given

$k=8.99 \times 10^{9} \frac{N^{2}}{C^{2}}$
$q_{1}=10 \mu m=1.0 \times 10^{-5} C$
$q_{2}=-30 \mu m=-3.0 \times 10^{-5} \mathrm{C}$
$\vec{r}_{1}=3.0 \hat{i}-4.0 \hat{j} m$
$\vec{r}_{2}=9.0 \hat{i}+6.0 \hat{j} m$

Solution

Find the force that q_{2} exerts on q_{1}.
The electric force between the two spheres is given by Coulomb's law. The subscript notation is the force on 1 due to 2 .

$$
\vec{F}_{12}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}
$$

Now \vec{r}_{21} is a vector that starts at \vec{r}_{2} and ends at \vec{r}_{1}. To find this vector, just subtract the r_{2} from r_{1}.

$$
\vec{r}_{12}=\vec{r}_{1}-\vec{r}_{2}=(3.0 \hat{i}-4.0 \hat{j} m)-(9.0 \hat{i}+6.0 \hat{j} m)=\{-6.0 \hat{i}-10.0 \hat{j}\} m
$$

The magnitude of this vector is

$$
r_{12}=\sqrt{(-6.0)^{2}+(-10.0)^{2}} m=11.7 m
$$

The unit vector is then

$$
\hat{r}_{12}=\frac{\vec{r}_{12}}{r_{12}}=\frac{\{-6.0 \hat{i}-10.0 \hat{j}\} m}{11.7 m}=-0.513 \hat{i}-0.855 \hat{j}
$$

Substitute these values into Coulomb's law gives

$$
\begin{aligned}
& \vec{F}_{12}=\left(8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{C^{2}}\right) \frac{\left(1.0 \times 10^{-5} C\right)\left(-3.0 \times 10^{-5} C\right)}{(11.7 \mathrm{~m})^{2}}\{-0.513 \hat{i}-0.855 \hat{j}\} \\
& \vec{F}_{12}=-1.97 \times 10^{-2} N\{-0.513 \hat{i}-0.855 \hat{j}\} \\
& \vec{F}_{12}=(1.01 \hat{i}+1.68 \hat{j}) \times 10^{-2} N
\end{aligned}
$$

The magnitude of the force is $1.97 \times 10^{-2} N$ and the diretion is

$$
\theta=\tan ^{-1}\left(\frac{1.68 \times 10^{-2} N}{1.01 \times 10^{-2} N}\right)=59.0^{\circ}
$$

