Chapter 5 Problem 58^{\dagger}

Given

$k=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$r=0.25 \mathrm{~m}$
$F_{B}=0.050 \mathrm{~N}$
$F_{A}=0.060 \mathrm{~N}$

Solution

Find the original charge on each sphere.
The electric force between the two spheres is given by Coulomb's law. F_{B} is used to indicate the force before the spheres are connected by a wire.

$$
\begin{equation*}
F_{B}=k \frac{q_{1} q_{2}}{r^{2}} \tag{Eq.1}
\end{equation*}
$$

After the balls are connected by the wire, the remaining charge is distributed evenly between the two spheres. This will result in a final force of F_{A}.

$$
F_{A}=k \frac{\left(\left(q_{1}+q_{2}\right) / 2\right)\left(\left(q_{1}+q_{2}\right) / 2\right)}{r^{2}}
$$

Simplifying the second equation gives

$$
F_{A}=k \frac{\left(q_{1}+q_{2}\right)^{2}}{4 r^{2}}
$$

Take the equation for F_{B} and solve for q_{2}.

$$
\begin{equation*}
q_{2}=\frac{F_{B} r^{2}}{k q_{1}} \tag{Eq.2}
\end{equation*}
$$

Substitute this into the equation for F_{A}.

$$
\begin{aligned}
& F_{A}=k \frac{\left(q_{1}+\left(\frac{F_{B} r^{2}}{k q_{1}}\right)\right)^{2}}{4 r^{2}} \\
& \frac{4 F_{A} r^{2}}{k}=\left(q_{1}+\left(\frac{F_{B} r^{2}}{k q_{1}}\right)\right)^{2} \\
& \pm \sqrt{\frac{4 F_{A} r^{2}}{k}}=q_{1}+\left(\frac{F_{B} r^{2}}{k q_{1}}\right)
\end{aligned}
$$

To make the math easier, let

$$
A=\sqrt{\frac{4 F_{A} r^{2}}{k}}
$$

[^0]$$
B=\frac{F_{B} r^{2}}{k}
$$
and substitute in the know values
\[

$$
\begin{aligned}
& A=\sqrt{\frac{4(0.060 \mathrm{~N})(0.25 \mathrm{~m})^{2}}{8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}}}=1.29 \times 10^{-6} C \\
& B=\frac{(0.050 \mathrm{~N})(0.25 \mathrm{~m})^{2}}{8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}}=3.47 \times 10^{-13} C^{2}
\end{aligned}
$$
\]

Then,

$$
\pm A=q_{1}+\frac{B}{q_{1}}
$$

Multiply both sides by q_{1} and put into a form that can be solved using the quadratic formula.

$$
0=q_{1}^{2} \pm A q_{1}+B
$$

Solutions for the equation with a positive second term gives

$$
\begin{aligned}
& 0=q_{1}^{2}+\left(1.29 \times 10^{-6}\right) q_{1}+\left(3.47 \times 10^{-13}\right) \\
& q_{1}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-\left(1.29 \times 10^{-6}\right) \pm \sqrt{\left(1.29 \times 10^{-6}\right)^{2}-4(1)\left(3.47 \times 10^{-13}\right)}}{2(1)} \\
& q_{1}=\frac{-\left(1.29 \times 10^{-6}\right) \pm\left(5.25 \times 10^{-7}\right)}{2} \\
& q_{1}=-3.83 \times 10^{-7},-9.08 \times 10^{-7}
\end{aligned}
$$

Solutions for the equation with a negative second term gives

$$
\begin{aligned}
& 0=q_{1}^{2}-\left(1.29 \times 10^{-6}\right) q_{1}+\left(3.47 \times 10^{-13}\right) \\
& q_{1}=\frac{-\left(-1.29 \times 10^{-6}\right) \pm \sqrt{\left(-1.29 \times 10^{-6}\right)^{2}-4(1)\left(3.47 \times 10^{-13}\right)}}{2(1)} \\
& q_{1}=9.08 \times 10^{-7}, 3.83 \times 10^{-7} \mathrm{C}
\end{aligned}
$$

Notice each set of solutions have the same magnitudes, but with opposite sides. By equation (2), we also see that q_{2} will have the same sign as q_{1}. That should make sense since the spheres repel each other. The charges can either be both positive or both negative.
Let's use the first positive solution and substitute into equation (2)

$$
q_{2}=\frac{F_{B} r^{2}}{k q_{1}}=\frac{(0.050 \mathrm{~N}))(0.25 \mathrm{~m})^{2}}{\left(8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right)\left(9.08 \times 10^{-7} \mathrm{C}\right)}=3.82 \times 10^{-7} \mathrm{C}
$$

Notice the answer is the other solution to q_{1}. That should make sense because interchanging q_{1} and q_{2} will not change the problem.

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

