Chapter 5 Problem 55^{\dagger}

Given

$k=8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}$
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$
$m=5.0 \mathrm{~g}=5.0 \times 10^{-3} \mathrm{~kg}$
$L=50 \mathrm{~cm}=0.500 \mathrm{~m}$
$\theta=5.0^{\circ}$

Solution

Find the magnitude of the charge on each ball.
First a free-body diagram needs to be generated. There are three forces: one due to electric repulsion to the right, one due to gravity in the downward direction and the last due to tension in the string to the upper-left. Using the angle designated in the diagram and let the positive x -axis be to the right and positive y-axis in the upward direction, then by Newton's 2 nd law we have the following equation.

$$
\Sigma \vec{F}_{i}=m a=\vec{F}_{T}+\vec{F}_{e}+\vec{F}_{g}
$$

Now

$$
\begin{aligned}
\vec{F}_{T} & =-T \sin \theta \hat{i}+T \cos \theta \hat{j} \\
\vec{F}_{e} & =k \frac{q_{1} q_{2}}{r^{2}} \hat{i}=k \frac{Q Q}{r^{2}} \hat{i}=k \frac{Q^{2}}{r^{2}} \hat{i} \\
\vec{F}_{g} & =-m g \hat{j}
\end{aligned}
$$

Substitute the individual forces into Newton's 2nd law and set the acceleration equal to zero (this is a statics problem).

$$
m a=0=-T \sin \theta \hat{i}+T \cos \theta \hat{j}+k \frac{Q^{2}}{r^{2}} \hat{i}-m g \hat{j}
$$

In the x-direction we get

$$
0=-T \sin \theta+k \frac{Q^{2}}{r^{2}}
$$

[^0]or
$$
T \sin \theta=k \frac{Q^{2}}{r^{2}}
$$

In the y-direction we get

$$
0=T \cos \theta-m g
$$

or

$$
T \cos \theta=m g
$$

Dividing the x -direction equation by the y -direction equation we get

$$
\frac{T \sin \theta}{T \cos \theta}=\frac{k \frac{Q^{2}}{r^{2}}}{m g}
$$

Simplifying this equation gives

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta=k \frac{Q^{2}}{m g r^{2}}
$$

Solving for Q gives

$$
\begin{aligned}
& Q^{2}=\frac{m g r^{2} \tan \theta}{k} \\
& Q=\sqrt{\frac{m g r^{2} \tan \theta}{k}}
\end{aligned}
$$

Although we know the angle θ, we need to determine the distance between the two balls. By trigonometry we have

$$
\sin \theta=\frac{x}{L}
$$

The distance x is

$$
x=L \sin \theta=(0.500 \mathrm{~m}) \sin \left(5.00^{\circ}\right)=0.0436 \mathrm{~m}
$$

The distance between the two balls is twice this

$$
r=2 x=2(0.0436 m)=0.0872 m
$$

Now substitute into the equation for finding the value of Q.

$$
\begin{aligned}
& Q=\sqrt{\frac{\left(5.0 \times 10^{-3} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.0872 \mathrm{~m})^{2} \tan \left(5.00^{\circ}\right)}{8.99 \times 10^{9} \frac{N m^{2}}{C^{2}}}} \\
& Q=6.02 \times 10^{-8} \mathrm{C}
\end{aligned}
$$

This is $60.2 n C$. Since the balls repel each other, they have charge of the same sign. Both are either negative or both are positive.

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

