Chapter 1 Problem 57^{\dagger}

Given

$\theta_{1}=30.0^{\circ}$
$\lambda_{y}=580 \mathrm{~nm}=5.80 \times 10^{-7} \mathrm{~m}$
$\lambda_{g}=550 \mathrm{~nm}=5.50 \times 10^{-7} \mathrm{~m}$
$n_{\text {air }}=1.000$
$n_{y}=1.492$
$n_{g}=1.493$

Solution

a) What is the angle between the green and yellow light as it leaves the polystyrene?

Begin with Snell's law and solve for the exit angle.

$$
\begin{aligned}
& n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right) \\
& \theta_{2}=\sin ^{-1}\left(\frac{n_{1} \sin \left(\theta_{1}\right)}{n_{2}}\right)
\end{aligned}
$$

Solving for the exiting angle for yellow light gives

$$
\theta_{y}=\sin ^{-1}\left(\frac{1.492 \sin \left(30.0^{\circ}\right)}{1.000}\right)=48.245^{\circ}
$$

Solving for the exiting angle for green light gives

$$
\theta_{g}=\sin ^{-1}\left(\frac{1.493 \sin \left(30.0^{\circ}\right)}{1.000}\right)=48.288^{\circ}
$$

The different in the angle is

$$
\Delta \theta=\theta_{g}-\theta_{y}=48.288-48.245=0.043^{\circ}
$$

Converting to radians gives

$$
\Delta \theta=\frac{\pi}{180}\left(0.043^{\circ}\right)=7.5 \times 10^{-4} \mathrm{rad}
$$

b) At what distance is are the two colors 1.00 mm apart?

Using our definition of radians

[^0]the relationship between arc length and distance is
$$
s=r \cdot \theta
$$

Solving for 'r' gives

$$
r=\frac{s}{\Delta \theta}
$$

The angle must be in radians

$$
r=\frac{1.00 \times 10^{-3} \mathrm{~m}}{7.5 \times 10^{-4} \mathrm{rad}}=1.33 \mathrm{~m}
$$

[^0]: ${ }^{\dagger}$ Problem from Univesity Physics by Ling, Sanny and Moebs (OpenStax)

