\qquad

The plot above is of current flowing through a 75.0 mH inductor.
a) What is the average emf (voltage) between 0 and 12 ms ?

For average emf, we can find the difference in current over difference in time from the plot.

$$
\begin{aligned}
& \varepsilon=-L \frac{\Delta I}{\Delta t}=-L \frac{\left(I_{f}-I_{0}\right)}{\left(t_{f}-t_{0}\right)} \\
& \varepsilon=-\left(75 \times 10^{-3} \mathrm{H}\right) \frac{(0.75 \mathrm{~A}-(-0.50 \mathrm{~A}))}{\left(12 \times 10^{-3} s-0 s\right)}=-\left(75 \times 10^{-3} \mathrm{H}\right) \frac{(1.25 \mathrm{~A})}{\left(12 \times 10^{-3} s\right)} \\
& \varepsilon=-7.81 \mathrm{~V}
\end{aligned}
$$

b) What is the instantaneous emf (voltage) at 6 ms ?

For instantaneous emf, we need to find the slope at 6 ms . Since the current follows a straight line between 4 and 8 ms , we can find the slope by taking the difference in current between these two times.

$$
\begin{aligned}
& \varepsilon=-L \frac{d I}{d t}=-L \frac{\Delta I}{\Delta t}=-L \frac{\left(I_{f}-I_{0}\right)}{\left(t_{f}-t_{0}\right)} \\
& \varepsilon=-\left(75 \times 10^{-3} H\right) \frac{(-1.00 A-(-0.50 \mathrm{~A}))}{\left(8.0 \times 10^{-3} s-4.0 \times 10^{-3} s\right)}=-\left(75 \times 10^{-3} \mathrm{H}\right) \frac{(-0.50 \mathrm{~A})}{\left(4.0 \times 10^{-3} s\right)} \\
& \varepsilon=9.38 \mathrm{~V}
\end{aligned}
$$

