\qquad
For the circuit illustrated to the right, write out a set of equations that would allow you to solve this circuit using Kirchoff's Rules. Using these equations find the voltage, V, of the power supply and the current, I_{V}, leaving the power supply if the value of I_{1} is 4 amps ? (Correct equations from Kirchoff's Rules accounts for 6 out of 10 points for this quiz.)

From Kirchoff's $1^{\text {st }}$ rule of current you get the node equation: $\quad I_{V}=I_{1}+I_{2}$
From Kirchoff's $2^{\text {nd }}$ rule of voltage you get the loop equations: $\quad V-I_{1} R_{1}=0$

$$
I_{1} R_{1}-I_{2} R_{2}=0
$$

Substituting in the resistor values the equations become

$$
\begin{aligned}
& I_{V}=I_{1}+I_{2} \\
& V-6 I_{1}=0 \\
& 6 I_{1}-10 I_{2}=0
\end{aligned}
$$

Since we know that $I_{1}=4$, using the last equation gives

$$
\begin{aligned}
& I_{2}=\frac{6 I_{1}}{10}=\frac{3}{5} I_{1} \\
& I_{2}=\frac{3}{5}(4)=2.4
\end{aligned}
$$

From the second equation we get the voltage of the power supply.

$$
V=6 I_{1}=6(4)=24
$$

Finally using the first equation and the values for I_{1} and I_{2} gives a power supply current of

$$
I_{V}=I_{1}+I_{2}=4+2.4=6.4
$$

Since resistance was given in ohms and current in amps, the voltage is in volts.
Therefore the voltage and the current of the power supply is

$$
\begin{aligned}
& V=24 \mathrm{~V} \\
& I_{V}=6.4 \mathrm{~A}
\end{aligned}
$$

