Chapter 6 Problem $85{ }^{\dagger}$

Given

$y=a x^{2}-b x$
$a=2 m^{-1}$
$b=4$
$\vec{F}=c x y \hat{i}+d \hat{j}$
$c=10 \mathrm{~N} / \mathrm{m}^{2}$
$d=15 \mathrm{~N}$

Solution

Find the work when going from $x=3 m$ to $x=6 m$.
Since we are working in 2 dimensions, the value of the differential displacements is $d \vec{r}=d x \hat{i}+d y \hat{j}$. For work the dot product becomes

$$
\begin{equation*}
W=\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}=\int_{r_{1}}^{r_{2}}\left(F_{x} d x+F_{y} d y\right)=\int_{r_{1}}^{r_{2}}(c x y d x+d d y) \tag{1}
\end{equation*}
$$

Substitute in for y with the relationship $y=a x^{2}-b x$ and for $d y$ the relationship $d y=(2 a x-b) d x$. This relationship comes from taking the derivative of the function for y.

$$
\frac{d y}{d x}=\frac{d\left(a x^{2}-b x\right)}{d x}=2 a x-b
$$

Then multiply both sides by $d x$ to get this relationship. Now substitute for y and $d y$ in the work equation (1).
$W=\int_{r_{1}}^{r_{2}}(c x y d x+d d y)=\int_{x=0}^{x=3}\left(c x\left(a x^{2}-b x\right) d x+d(2 a x-b) d x\right)=\int_{x=0}^{x=3}\left(c a x^{3}-c b x^{2}+2 d a x-d b\right) d x$
Notice that after this substitution the integral only depends on x and, therefore, the limits of integration only depend on x.
Now perform the integration with respect to x .

$$
W=\left|\frac{c a x^{4}}{4}-\frac{c b x^{3}}{3}+\frac{2 d a x^{2}}{2}-d b x\right|_{x=0}^{x=3}
$$

Substituting in the values for a, b, c, and d and solving gives

$$
\begin{aligned}
& W=\left(\frac{(10)(2) x^{4}}{4}-\frac{(10)(4) x^{3}}{3}+\frac{2(15)(2) x^{2}}{2}-\left.(15)(4) x\right|_{x=0} ^{x=3}\right. \\
& W=\left(5 x^{4}-\frac{40 x^{3}}{3}+30 x^{2}-\left.60 x\right|_{x=0} ^{x=3}\right. \\
& W=\left(5(3)^{4}-\frac{40(3)^{3}}{3}+30(3)^{2}-60(3)\right)-\left(5(0)^{4}-\frac{40(0)^{3}}{3}+30(0)^{2}-60(0)\right) \\
& W=(405-360+270-180)-0=135 J
\end{aligned}
$$

