Chapter 5 Problem 58^{\dagger}

Given

$\Delta x=5.4 m$
$\theta=30^{\circ}$
$t=3.3 \mathrm{~s}$
$v_{0}=0 \mathrm{~m} / \mathrm{s}$

Solution

Free-body diagram of the crate.

Find the maximum coefficient of friction that allows the crate to reach the bottom of the ramp in at least 3.3 s .

The slope of the ramp and the coefficient of friction are constant; therefore, the acceleration of the crate down the ramp will also be constant.
Applying the kinematic equations to the problem, find the acceleration of the crate.

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Using the initial velocity of $0 \mathrm{~m} / \mathrm{s}$ and an initial position of 0 m , the acceleration is

$$
\begin{aligned}
& x=\frac{1}{2} a t^{2} \\
& a=\frac{2 x}{t^{2}} \\
& a=\frac{2(5.4 \mathrm{~m})}{(3.3 \mathrm{~s})^{2}}=0.99 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

From the free-body diagram given above and using Newton's $2^{\text {nd }}$ law gives

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{F}_{f}+\vec{W}+\vec{N}=m \vec{a}
\end{aligned}
$$

Choose the coordinate system so that the x axis is down the ramp. The acceleration will be in the x direction. The weight of the crate in this coordinate system is

$$
\vec{W}=m g \sin \theta \hat{i}-m g \cos \theta \hat{j}
$$

[^0]Writing out Newton's $2^{\text {nd }}$ law in unit vector notation gives

$$
-\mu_{k} N \hat{i}+m g \sin \theta \hat{i}-m g \cos \theta \hat{j}+N \hat{j}=m a \hat{i}
$$

The x-component of this equation is

$$
\begin{equation*}
-\mu_{k} N+m g \sin \theta=m a \tag{1}
\end{equation*}
$$

and the y-component of this equation is

$$
\begin{equation*}
-m g \cos \theta+N=0 \tag{2}
\end{equation*}
$$

From equation (2) we see that the normal force is $m g \cos \theta$. Substitute this into equation(1) and solve for the acceleration.

$$
\begin{aligned}
& -\mu_{k} m g \cos \theta+m g \sin \theta=m a \\
& \mu_{k}=\frac{m g \sin \theta-m a}{m g \cos \theta} \\
& \mu_{k}=\tan \theta-\frac{a}{g \cos \theta} \\
& \mu_{k}=\tan \left(30^{\circ}\right)-\frac{0.99 m / s^{2}}{\left(9.8 m / s^{2}\right) \cos 30^{\circ}}=0.46
\end{aligned}
$$

Therefore, the coefficient of friction must be less than or equal to 0.46 .

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

