Chapter 5 Problem 54^{\dagger}

Given

$\mu_{k}=0.71$
$\Delta x=47 \mathrm{~m}$
$v_{f}=25 \mathrm{~km} / \mathrm{h}=6.94 \mathrm{~m} / \mathrm{s}$

Solution

Find the initial speed of the car.
From the free-body diagram given above and using Newton's $2^{\text {nd }}$ law gives

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{F}_{f}+\vec{W}+\vec{N}=m \vec{a}
\end{aligned}
$$

Choose the coordinate system so that the x axis is in the horizontal direction. The acceleration will also be in the x direction. Writing out the equation in unit vector notation gives

$$
-\mu_{k} N \hat{i}-m g \hat{j}+N \hat{j}=m a \hat{i}
$$

The x -component of this equation is

$$
\begin{equation*}
-\mu_{k} N=m a \tag{1}
\end{equation*}
$$

and the y-component of this equation is

$$
\begin{equation*}
-m g+N=0 \tag{2}
\end{equation*}
$$

From equation (2) we see that the normal force is $m g$. Substitute this into equation (1) and solve for the acceleration.

$$
\begin{aligned}
& -\mu_{k}(m g)=m a \\
& a=-\mu_{k} g=-(0.71)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=6.96 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Now that we have the acceleration, the following kinematic equation can be used to find the initial velocity.

$$
\begin{aligned}
& v_{f}^{2}-v_{i}^{2}=2 a \Delta x \\
& v_{i}^{2}=v_{f}^{2}-2 a \Delta x \\
& v_{i}=\sqrt{v_{f}^{2}-2 a \Delta x}=\sqrt{(6.94 m / s)^{2}-2\left(-6.96 \mathrm{~m} / \mathrm{s}^{2}\right)(47 \mathrm{~m})}=26.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

In terms of km / h this is $95.4 \mathrm{~km} / \mathrm{h}$. Converting this to miles per hour gives $59.4 \mathrm{mi} / \mathrm{h}$.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

