Chapter 4 Problem 33^{\dagger}

Given

$m=630 \mathrm{Mg}=630 \times 10^{6} \mathrm{~g}=6.30 \times 10^{5} \mathrm{~kg}$
$v_{0}=0 \mathrm{~m} / \mathrm{s}$
$v_{f}=7200 \mathrm{~km} / \mathrm{h}$
$\Delta t=2.0 \mathrm{~min}=120 \mathrm{~s}$

Solution

a) Find the thrust of the Ares I engine.

Find convert the final velocity into m / s.

$$
v_{f}=\frac{7200 \mathrm{~km}}{h r}\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=2000 \mathrm{~m} / \mathrm{s}
$$

Next calculate the average acceleration of the rocket

$$
a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{2000 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{120 \mathrm{~s}}=16.67 \mathrm{~m} / \mathrm{s}^{2}
$$

The two forces acting on the rocket are the thrust and the weight. From Newton's 2nd law

$$
\Sigma \vec{F}=\vec{F}_{\text {thrust }}+\vec{W}=m \vec{a}
$$

Solving for thrust gives

$$
\vec{F}_{t h r u s t}=m \vec{a}-\vec{W}
$$

The weight vector is

$$
\vec{W}=-m g \hat{j}
$$

and the acceleration upward at $16.67 \mathrm{~m} / \mathrm{s}^{2}$ is represented as the vector

$$
\vec{a}=16.67 \mathrm{~m} / \mathrm{s}^{2} \hat{j}
$$

This makes the force of thrust

$$
\begin{align*}
\vec{F}_{\text {thrust }} & =m \vec{a}-\vec{W}=m a \hat{j}-(-m g \hat{j}) \\
\vec{F}_{\text {thrust }} & =m a \hat{j}+m g \hat{j}=m(a+g) \hat{j} \tag{1}\\
\vec{F}_{\text {thrust }} & =\left(6.30 \times 10^{5} \mathrm{~kg}\right)\left(16.67 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j} \\
\vec{F}_{\text {thrust }} & =\left(6.30 \times 10^{5} \mathrm{~kg}\right)\left(26.47 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}=1.67 \times 10^{7} \hat{j} \mathrm{~N}
\end{align*}
$$

b) Find the force on an astronaut with a mass of 75 kg .

The astronaut is accelerating at the same rate as the shuttle, so formula (1) is still applicable except with a mass of 75 kg .

$$
\begin{aligned}
& \vec{F}_{\text {astronaut }}=(75 \mathrm{~kg})\left(16.67 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j} \\
& \vec{F}_{\text {astronaut }}=(75 \mathrm{~kg})\left(26.47 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}=1.98 \times 10^{3} \hat{j} \mathrm{~N}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

