Chapter 3 Problem $43{ }^{\dagger}$

Given

$r=385,000 \mathrm{~km}=3.85 \times 10^{8} \mathrm{~m}$
$t=27$ days

Solution

Find the acceleration of the moon.
First convert the time into seconds.

$$
t=(27 d)\left(\frac{24 h r}{1 d}\right)\left(\frac{3600 s}{1 h}\right)=2.33 \times 10^{6} s
$$

Since the moon is traveling in a nearly circular orbit at constant speed, the acceleration will be centripetal acceleration. The velocity of the moon is the circumference of the orbit divided by the time.

$$
\begin{aligned}
& v=\frac{d}{t}=\frac{2 \pi r}{t}=\frac{2 \pi\left(3.85 \times 10^{8} \mathrm{~m}\right)}{2.33 \times 10^{6} \mathrm{~s}} \\
& v=1038 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The centripetal acceleration is then

$$
a=\frac{v^{2}}{r}=\frac{(1038 \mathrm{~m} / \mathrm{s})^{2}}{3.85 \times 10^{8} \mathrm{~s}}=2.8 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

