Chapter 3 Problem $29{ }^{\dagger}$

Given

$V=0.57 \mathrm{~m} / \mathrm{s}$ (speed of river)
$v^{\prime}=1.3 \mathrm{~m} / \mathrm{s}$ (speed of boat relative to the water)
$v=$? (speed of the boat relative to the shore)
$d=63 m$ (width of the river)

Solution

a) In what direction should you head your boat?

Since you want to travel straight across the river, you want the x-component of your boats velocity to cancel the velocity of the current. Since the desired direction of travel is perpendicular to the current, the vectors form a right triangle. The angle for the direction of travel is then

$$
\begin{aligned}
& \sin \theta=\frac{V}{v^{\prime}}=\frac{0.57 \mathrm{~m} / \mathrm{s}}{1.3 \mathrm{~m} / \mathrm{s}} \\
& \theta=26^{\circ} \text { upstream }
\end{aligned}
$$

b) How long will it take to get across the river?

The velocity of the boat with respect to the shore is found using the right triangle in the diagram.

$$
\begin{aligned}
& \cos \theta=\frac{v}{v^{\prime}} \\
& v=v^{\prime} \cos \theta=(1.3 \mathrm{~m} / \mathrm{s}) \cos \left(26.0^{\circ}\right) \\
& v=1.17 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Since the velocity is constant, the time is calculated from the formula $d=v \cdot t$

$$
t=\frac{d}{v}=\frac{63 \mathrm{~m}}{1.17 \mathrm{~m} / \mathrm{s}}=54 \mathrm{~s}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

