Chapter 15 Problem $17{ }^{\dagger}$

Given

$m=8.8 \mathrm{~kg}$
$V=0.050 \mathrm{~m}^{3}$

Solution

a) Find the density of the compressed air.

Density is given by the formula

$$
\rho=\frac{m}{V}
$$

Substitute in the given values and we have

$$
\rho=\frac{(8.8 \mathrm{~kg})}{\left(0.050 \mathrm{~m}^{3}\right)}=176 \mathrm{~kg} / \mathrm{m}^{3}
$$

b) What is the volume if the density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$?

Use the equation given above and solve for volume

$$
\begin{aligned}
V & =\frac{m}{\rho} \\
V & =\frac{8.8 \mathrm{~kg}}{\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)}=7.33 \mathrm{~m}^{3}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

