Chapter 14 Problem $71{ }^{\dagger}$

Given

$v=340 \mathrm{~m} / \mathrm{s}$
$u=2.2 v$
$\Delta t=19 \mathrm{~s}$

Solution

Find the altitude of the plane.
Since the plane is travelling at super-sonic speeds the angle of the shock wave is given by

$$
\theta=\sin ^{-1}\left(\frac{v}{u}\right)
$$

Substituting in the value for u gives

$$
\theta=\sin ^{-1}\left(\frac{v}{2.2 v}\right)=\sin ^{-1}\left(\frac{1}{2.2}\right)=27.0^{\circ}
$$

From the diagram the altitude can be calculated from the angle of the shock wave and the distance the plane travels before the shock wave hits you.

$$
\begin{equation*}
\tan \theta=\frac{a}{d} \tag{1}
\end{equation*}
$$

The distance the plane travels is velocity times time

$$
d=u \cdot t
$$

Substituting this into equation 1 and solving for altitude gives

$$
a=d \tan \theta=u \cdot t \tan \theta
$$

Substituting in the appropriate values gives

$$
\begin{aligned}
& a=2.2 \mathrm{v} \cdot t \tan \theta=2.2(340 \mathrm{~m} / \mathrm{s})(19 \mathrm{~s}) \tan 27.0^{\circ} \\
& a=7240 \mathrm{~m}=7.24 \mathrm{~km}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

