Chapter 14 Problem $46{ }^{\dagger}$

Given

Figure 14-36

Solution

Write out the mathematical description of the wave.
The generic form of the displacement of the wave is

$$
y=A \cos (k x+\omega t)
$$

The amplitude, A, is the maximum displacement from equilibrium. From Figure $14-36$ the amplitude is 1.5 cm .

The wavelength, λ, is the distance between crests of the wave. From Figure $14-36$ the wavelength is 8 cm . Wavenumber, k, can now be calculated from the wavelength.

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{(8.0 \mathrm{~cm})}=0.785 \mathrm{~cm}^{-1}
$$

In 2.6 seconds the wave shifted 2 cm toward the positive x direction. The velocity of the wave is then

$$
v=\frac{\Delta x}{\Delta t}=\frac{2.0 \mathrm{~cm}}{2.6 \mathrm{~s}}=0.769 \mathrm{~cm} / \mathrm{s}
$$

The relationship between velocity and angular frequency is given by

$$
v=\frac{\omega}{k}
$$

Therefore, the angular frequency is

$$
\omega=k v=\left(0.785 \mathrm{~cm}^{-1}\right)(0.769 \mathrm{~cm} / \mathrm{s})=0.604 \mathrm{~s}^{-1}
$$

Since the wave is propagating in the positive x direction, the time dependent portion must be subtracted from the x dependent portion. Combining all this information gives a wave function of

$$
y=(1.5 \mathrm{~cm}) \cos \left(\left(0.785 \mathrm{~cm}^{-1}\right) x-\left(0.604 \mathrm{~s}^{-1}\right) t\right)
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

