Chapter 11 Problem $40{ }^{\dagger}$

Given

$m=0.880 \mathrm{~kg}$
$l=0.74 \mathrm{~m}$
$h=0.43 \mathrm{~m}$
$I_{c m}=0.048 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$v=50 \mathrm{~m} / \mathrm{s}$

Solution

a) Find the angular momentum about the pivot point.

First find the moment of inertia about the pivot point. Using the parallel-axis theorem

$$
\begin{aligned}
& I=I_{c m}+m h^{2}=0.048 \mathrm{~kg} \cdot \mathrm{~m}^{2}+(0.88 \mathrm{~kg})(0.43 \mathrm{~m})^{2} \\
& I=0.211 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

The angular velocity about the pivot point is

$$
\omega=\frac{v}{r}=\frac{50 \mathrm{~m} / \mathrm{s}}{0.74 \mathrm{~m}}=67.6 \mathrm{rad} / \mathrm{s}
$$

The angular momentum is then

$$
L=I \cdot \omega=\left(0.211 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(67.6 \mathrm{rad} / \mathrm{s})=14.3 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
$$

b) Find the torque applied if this angular momentum is reached in 0.25 s .

Torque is the rate of change of angular momentum. Therefore, the average torque is

$$
\tau=\frac{\Delta L}{\Delta t}=\frac{14.3 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{0.25 \mathrm{~s}}=57 \mathrm{~N} \cdot \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

