Chapter 8 Problem $16{ }^{\dagger}$

Given

$m_{a}=67.0 \mathrm{~kg}$
$m_{s}=73,000 \mathrm{~kg}$
$r=84.0 \mathrm{~m}$

Solution

Find the force between the astronaut and the shuttle.
The force of gravity is

$$
\begin{aligned}
& F=G \frac{m_{a} m_{s}}{r^{2}} \\
& F=\left(6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{(67.0 \mathrm{~kg})(73,000 \mathrm{~kg})}{(84.0 \mathrm{~m})^{2}} \\
& F=4.62 \times 10^{-8} \mathrm{~N}=46.2 \mathrm{nN}
\end{aligned}
$$

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

