Chapter 7 Problem $50{ }^{\dagger}$

Given

$a=4.04 \times 10^{-28}$
$b=5.52 \times 10^{-98}$
$n=8.22$

Solution

Find the equilibrium separation between the ions in NaCl .
The formula for determining the potential energy between ions is

$$
U=\frac{b}{r^{n}}-\frac{a}{r}=b r^{-n}-a r^{-1}
$$

The force between the ions is the negative derivative of the potential energy function.

$$
F=-\frac{\partial U}{\partial r}
$$

At equilibrium the force is zero. Therefore,

$$
0=F=-\frac{\partial U}{\partial r}=-\left\{-n b r^{-n-1}-(-1) a r^{-2}\right\}=\frac{n b}{r^{n+1}}-\frac{a}{r^{2}}
$$

Solving for r gives

$$
\begin{aligned}
& \frac{a}{r^{2}}=\frac{n b}{r^{n+1}} \\
& \frac{r^{n+1}}{r^{2}}=\frac{n b}{a} \\
& r^{n-1}=\frac{n b}{a} \\
& r=\left(\frac{n b}{a}\right)^{1 /(n-1)}
\end{aligned}
$$

Substitute in the provided values gives

$$
r=\left(\frac{(8.22)\left(5.52 \times 10^{-98}\right)}{4.04 \times 10^{-28}}\right)^{1 /(8.22-1)}=\left(1.123 \times 10^{-69}\right)^{0.1385}=2.82 \times 10^{-10} \mathrm{~m}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

