Chapter 7 Problem $13{ }^{\dagger}$

Given

$m=70 \mathrm{~kg}$

Solution

a) Find the potential energy at 1900 m above sea level.

Potential energy is the negative of the work done.

$$
\Delta U=-W=-\int \vec{F}_{g} d \vec{r}=-\int_{y_{0}}^{y}-m g d y
$$

Let $U=0$ at y_{0} which is sea level. Then

$$
\begin{aligned}
& U=m g y=(70 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1900 \mathrm{~m})=1.3 \times 10^{6} \mathrm{~J} \\
& U=1.3 M J
\end{aligned}
$$

b) Find the potential energy at 86 m below sea level.

From the equation derived above

$$
\begin{aligned}
& U=m g y=(70 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-86 \mathrm{~m})=-5.9 \times 10^{4} \mathrm{~J} \\
& U=-59 \mathrm{~kJ}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

