Given

$F=\frac{b}{\sqrt{x}}=b x^{-1 / 2}$

Solution

Show that the work done going from x_{1} to x_{2} is finite even in the limit when x_{1} approaches zero.
Given the force function from this problem, it is clear that the force is undefined at $x=0$. However, the definition of work is

$$
W=\int F \cdot d x
$$

Putting in the force function and integrating between the given limits gives

$$
W=\int_{x_{1}}^{x_{2}} b x^{-1 / 2} d x
$$

b is a constant so

$$
\begin{aligned}
& W=b \int_{x_{1}}^{x_{2}} x^{-1 / 2} d x=b\left(\left.\frac{x^{1 / 2}}{1 / 2}\right|_{x_{1}} ^{x_{2}}\right. \\
& W=b\left(2 x_{2}^{1 / 2}-2 x_{1}^{1 / 2}\right)=2 b\left(x_{2}^{1 / 2}-x_{1}^{1 / 2}\right)
\end{aligned}
$$

As x_{1} approaches zero, the work done approaches

$$
W=2 b x_{2}^{1 / 2}=2 b \sqrt{x_{2}}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

