Chapter 6 Problem $72{ }^{\dagger}$

Given

$x=0.50 \mathrm{~m}$
$m=45 \mathrm{~kg}$
$E=230 \mathrm{kcal}$

Solution

Are five reps in lifting a weigh enough to burn off the calories from a candy bar?
The work done lifting the barbell is

$$
W=F \cdot x
$$

The force exerted by the person is equal and opposite of the force of gravity, which is parameterized as $F=m g$. Therefore, the work done lifting the barbell once is

$$
W=m g x=(45 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})=220 \mathrm{~J}
$$

Lifting the barbell five times consumes $5(220 J)=1100 J$ of energy. The energy of the candy bar is 230 kcal . Converting this to joules gives us

$$
E=230 k c a l\left(\frac{4184 \mathrm{~J}}{1.00 k c a l}\right)=962,000 \mathrm{~J}
$$

Therefore, the work done lifting the barbell is

$$
\frac{1100 J}{962,000 J}=0.00114=0.114 \%
$$

of the energy from the candy bar. If the person's body is 100% efficient at converting energy into work, she would need to do 874 times as much work.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

