Chapter 6 Problem 21^{\dagger}

Given

$k=200 \mathrm{~N} / \mathrm{m}$

Solution

a) Find the work done to stretch the spring 10 cm .

According to the diagram, as the spring is stretched downward, the spring exerts a force in the upward direction. The relationship is as follows.

$$
\vec{F}_{s}=-k \Delta x \hat{j}
$$

By Newton's $3^{r d}$ law the person doing the work must be exerting an equal and opposite force on the spring. Therefore, this force is

$$
\vec{F}_{p}=k \Delta x \hat{j}
$$

We find the work that the person did on the spring by using the definition of work.

$$
W=\int_{0}^{x} F d x=\int_{0}^{x} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{x}=\frac{1}{2} k x^{2}
$$

The integral definition of work is used because the spring force is constantly changing magnitude. Therefore, to stretch the spring 10 cm

$$
W=\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(0.10 \mathrm{~m})^{2}=1.0 \mathrm{~J}
$$

b) Find the work to go from 10 cm to 20 cm .

The work to go from 0 cm to 20 cm is

$$
W=\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(0.20 \mathrm{~m})^{2}=4.0 \mathrm{~J}
$$

The difference of energy between 10 cm and 20 cm is

$$
\Delta W=W_{f}-W_{i}=4.0 \mathrm{~J}-1.0 \mathrm{~J}=3.0 \mathrm{~J}
$$

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

