## Chapter 5 Problem $37{ }^{\dagger}$



## Given

## Solution

a) Find the tension in the string.

Since $m_{1}$ is moving in a circle with constant speed, it is experiencing centripetal acceleration. The only force acting on $m_{1}$ is the tension in the string. Therefore,

$$
\begin{equation*}
T=m_{1} a=m_{1} \frac{v^{2}}{r} \tag{1}
\end{equation*}
$$

Likewise the hanging mass, $m_{2}$, is stationary and the tension must offset the weight of the mass. Therefore,

$$
\begin{equation*}
T=m_{2} g \tag{2}
\end{equation*}
$$

b) Find the period of circular motion.

Substitute equation 2 into equation 1 and solve for speed

$$
\begin{aligned}
& m_{2} g=m_{1} \frac{v^{2}}{r} \\
& v^{2}=\frac{m_{2} g r}{m_{1}} \\
& v=\sqrt{\frac{m_{2} g r}{m_{1}}}
\end{aligned}
$$

The period of circular motion is the time it takes for $m_{1}$ to make one full rotation on the table top. When this happens, the mass has travelled the circumference of a circle.

$$
C=2 \pi r
$$

Speed is defined to be the distance travelled per time period, T. Therefore,

$$
v=\frac{C}{T}
$$

Solving for the time period gives

$$
T=\frac{C}{v}
$$

Substitute in the values for speed and circumference

$$
T=\frac{2 \pi r}{\sqrt{\frac{m_{2} g r}{m_{1}}}}
$$

[^0]Simplify the complex fraction

$$
T=2 \pi r \sqrt{\frac{m_{1}}{m_{2} g r}}
$$

Bring $r$ into the square root sign and simplify

$$
T=2 \pi \sqrt{\frac{m_{1} r}{m_{2} g}}
$$


[^0]:    ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

