Chapter 2 Problem $71{ }^{\dagger}$

Given

$y_{0}=12 \mathrm{~m}$
$v_{0}=0 \mathrm{~m} / \mathrm{s}$
$g_{\text {moon }}=-1.62 \mathrm{~m} / \mathrm{s}^{2}$

Solution

Find the time it takes to fall and its impact speed.
Use the following kinematic equation to find the time.

$$
\Delta y=y-y_{0}=v_{0} t+\frac{1}{2} a t^{2}
$$

Since the initial velocity is zero this equation becomes

$$
\Delta y=\frac{1}{2} a t^{2}
$$

Solving for t gives.

$$
t=\sqrt{\frac{2 \Delta y}{a}}=\sqrt{\frac{2\left(y_{f}-y_{0}\right)}{a}}=\sqrt{\frac{2(0 m-12 m)}{-1.62 m / s^{2}}}=3.85 \mathrm{~s}
$$

The impact velocity is then

$$
v=v_{0}+a t=0 \mathrm{~m} / \mathrm{s}+\left(-1.62 \mathrm{~m} / \mathrm{s}^{2}\right)(3.85 \mathrm{~s})=-6.24 \mathrm{~m} / \mathrm{s}
$$

The negative sign indicates that the velocity is in the downward direction.

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

