Chapter 2 Problem $46{ }^{\dagger}$

Given

$v_{m e}=9.0 \mathrm{~m} / \mathrm{s}(20 \%$ faster than my brother)
$d=100 \mathrm{~m}$

Solution

Find the brother's head start for a tie.
The time for my 100 m run is

$$
\begin{aligned}
& v=\frac{\Delta x}{\Delta t} \\
& \Delta t=t_{m e}=\frac{\Delta x}{v}=\frac{100 \mathrm{~m}}{9.0 \mathrm{~m} / \mathrm{s}}=11.1 \mathrm{~s}
\end{aligned}
$$

Brother's time for the 100 m run will be 20% longer. (Multiply by 120\%)

$$
t_{\text {brother }}=1.2 t_{m e}=1.2(11.1 \mathrm{~s})=13.3 \mathrm{~s}
$$

The brother should get a $13.3 s-11.1 s=2.2 s$ head start.
By the way, your brother's velocity is given by the relationship

$$
v_{m e}=(120 \%) v_{\text {brother }}
$$

Therefore, the brother's speed is

$$
v_{\text {brother }}=\frac{v_{m e}}{120 \%}=\frac{9.0 \mathrm{~m} / \mathrm{s}}{1.20}=7.5 \mathrm{~m} / \mathrm{s}
$$

Also, since it takes you 11.1 s to travel 100 m , your brother travels a distance of

$$
(7.5 \mathrm{~m} / \mathrm{s})(11.1 \mathrm{~s})=83.3 \mathrm{~m}
$$

Therefore, you could give your brother a 16.7 m head start.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

