Chapter 14 Problem $37{ }^{\dagger}$

Given

$P=6.2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$\rho=4.5 \mathrm{~kg} / \mathrm{m}^{3}$
$\gamma=1.61$
$\lambda=50 \mathrm{~cm}=0.50 \mathrm{~m}$

Solution

Find the frequency of the wave under these conditions.
First the velocity of the wave must be found. This depends on the density and pressure by the equation

$$
\begin{equation*}
v=\sqrt{\frac{\gamma P}{\rho}} \tag{1}
\end{equation*}
$$

The relationship between velocity and frequency is

$$
\begin{equation*}
v=f \cdot \lambda \tag{2}
\end{equation*}
$$

Combining Equations 1 and 2 and solving for frequency gives

$$
\begin{aligned}
& f=\frac{v}{\lambda}=\frac{1}{\lambda} \sqrt{\frac{\gamma P}{\rho}}=\frac{1}{(0.50 m)} \sqrt{\frac{(1.61)\left(6.2 \times 10^{5} N / m^{2}\right)}{\left(4.5 \mathrm{~kg} / \mathrm{m}^{3}\right)}} \\
& f=942 \mathrm{~Hz}
\end{aligned}
$$

Under normal conditions in air the frequency would be

$$
f=\frac{v}{\lambda}=\frac{(343 \mathrm{~m} / \mathrm{s})}{(0.5 \mathrm{~m})}=686 \mathrm{~Hz}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

