Chapter 14 Problem $23{ }^{\dagger}$

Given

$y=1.3 \cos (0.69 x+31 t)$
x and y are in centimeters and t is in seconds.

Solution

a) Find the amplitude of the wave.

The generic form for the displacement of a wave is

$$
\begin{equation*}
y=A \cos (k x+\omega t) \tag{1}
\end{equation*}
$$

The A represents the amplitude. Therefore, by inspection the amplitude is 1.3 cm .
b) Find the wavelength of the wave.

In equation $1, k$ represents the wavenumber. The relationship between wavenumber and wavelength is

$$
k=\frac{2 \pi}{\lambda}
$$

Solving for λ gives

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{\left(0.69 \mathrm{~cm}^{-1}\right)}=9.11 \mathrm{~cm}
$$

The wavenumber had to have units of cm^{-1} in order to cancel out the units of x when they are multiplied together.
c) Find the period of the wave.

In equation 1, ω represents the angular frequency. The relationship between angular frequency and time period is

$$
\omega=\frac{2 \pi}{T}
$$

Solving for ω gives

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\left(31 s^{-1}\right)}=0.203 s
$$

d) Find the speed of the wave.

The speed of a wave is given by the relationship

$$
v=\frac{\omega}{k}=\frac{31 \mathrm{~s}^{-1}}{0.69 \mathrm{~cm}^{-1}}=44.9 \mathrm{~cm} / \mathrm{s}
$$

e) Find the direction of propagation.

Since the time dependent portion of the function is added, the wave is propagating towards the negative x direction.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

