Chapter 13 Problem $24{ }^{\dagger}$

Given

$f=32,768 \mathrm{~Hz}$
$A=100 \mathrm{~nm}=1.0 \times 10^{-7} \mathrm{~m}$

Solution

Find the maximum velocity and acceleration of the face of the quartz crystal.
The position of the quartz crystal face is given by

$$
x=A \cos (\omega t+\phi)
$$

The maximum displacement is the amplitude, A. The angular frequency, ω, is caluclated from the frequency using the relationship $\omega_{0}=2 \pi f$.
Taking the first derivative of the position function with respect to time gives the velocity,

$$
v=-A \omega \sin (\omega t+\phi)
$$

The maximum velocity is the amplitude times the angular frequency. Substituting in the appropriate values give a maximum velocity of

$$
\begin{aligned}
& v_{\max }=A \omega=A 2 \pi f=\left(1.0 \times 10^{-7} \mathrm{~m}\right) 2 \pi(32,768 \mathrm{~Hz}) \\
& v_{\max }=2.06 \times 10^{-2} \mathrm{~m} / \mathrm{s}=2.06 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Taking the derivative of the velocity function gives the acceleration,

$$
a=-A \omega^{2} \cos (\omega t+\phi)
$$

The maximum acceleration is the amplitude times the angular frequency squared. Substituting in the appropriate values give a maximum acceleration of

$$
\begin{aligned}
& a_{\max }=A \omega^{2}=A(2 \pi f)^{2}=\left(1.0 \times 10^{-7} \mathrm{~m}\right)(2 \pi(32,768 \mathrm{~Hz}))^{2} \\
& a_{\max }=4.24 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

