Chapter 11 Problem $30{ }^{\dagger}$

Given

$|B|=2|A|$
$|\vec{A} \times \vec{B}|=A^{2}$

Solution

Find the direction of vector B.
Since the cross product points in the negative z direction, the vector B must lie in the xy plane along with vector A. A negative z-direction corresponds to a clockwise rotation. Therefore, vector B must be pointed to the right of the direction of vector A as illustrated in the diagram. Finally we need to find the angle that B makes with respect to A .
The magnitude of a cross product is equal to

$$
|\vec{A} \times \vec{B}|=|A||B| \sin \theta
$$

Substitute in the values for the magnitude of B and of the cross product

$$
A^{2}=A(2 A) \sin \theta
$$

Solve for theta

$$
1=2 \sin \theta
$$

$$
\theta=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}
$$

Since θ is 30°, B must be parallel to the x -axis.

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

