Chapter 10 Problem $62{ }^{\dagger}$

Given

$v=3.7 \mathrm{~m} / \mathrm{s}$

Solution

Find the maximum height a hollow ball will reach going up an inclined plane.
The rolling hollow ball has both rotational and translational kinetic energy. The moment of inertia for a hollow ball is

$$
I=\frac{2}{3} m r^{2}
$$

The total kinetic energy is

$$
\begin{aligned}
& K_{\text {tot }}=K_{\text {rot }}+K_{\text {tran }}=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2} \\
& K_{t o t}=\frac{1}{2}\left(\frac{2}{3} m r^{2}\right) \omega^{2}+\frac{1}{2} m v^{2}=\frac{1}{3} m(r \omega)^{2}+\frac{1}{2} m v^{2} \\
& K_{\text {tot }}=\frac{1}{3} m(v)^{2}+\frac{1}{2} m v^{2}=\frac{5}{6} m v^{2}
\end{aligned}
$$

This kinetic energy is converted to gravitational potential energy.

$$
U=m g h
$$

Setting the potential and kinetic energies equal and solving for height gives

$$
\begin{aligned}
& m g h=\frac{5}{6} m v^{2} \\
& h=\frac{5 m v^{2}}{6 m g}=\frac{5 v^{2}}{6 g}=\frac{5(3.7 \mathrm{~m} / \mathrm{s})^{2}}{6\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& h=1.16 \mathrm{~m}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

