Chapter 10 Problem $36{ }^{\dagger}$

Given

$m=150 \mathrm{~g}=0.150 \mathrm{~kg}$
$v=33 \mathrm{~m} / \mathrm{s}$
$\omega=42 \mathrm{rad} / \mathrm{s}$
$r=3.7 \mathrm{~cm}=0.037 \mathrm{~m}$

Solution

Find the fraction of kinetic energy that is rotational.
Since the baseball is solid, its moment of inertia is

$$
I=\frac{2}{5} m r^{2}=\frac{2}{5}(0.150 \mathrm{~kg})(0.037 \mathrm{~m})^{2}=8.21 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The rotational kinetic energy of the baseball is then

$$
K_{\text {rot }}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(8.21 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(42 \mathrm{rad} / \mathrm{s})^{2}=0.0724 \mathrm{~J}
$$

The translational kinetic energy of the baseball is

$$
K_{\text {tran }}=\frac{1}{2} m v^{2}=\frac{1}{2}(0.150 \mathrm{~kg})(33 \mathrm{~m} / \mathrm{s})^{2}=81.68 \mathrm{~J}
$$

The fraction of kinetic energy in rotation is

$$
\text { fraction }=\frac{K_{\text {rot }}}{K_{\text {tran }}+K_{\text {rot }}}=\frac{0.0724 J}{81.68 J+0.0724 J}=8.86 \times 10^{-4}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

