Chapter 4 Problem 21^{\dagger}

Given

$\vec{A}=5.0 \hat{i} \mathrm{~km}$
$\vec{B}=10.0 \mathrm{~km} \angle 20^{\circ}$ west of north
$\vec{C}=-8.0 \hat{i} \mathrm{~km}$

Solution

What is the final displacement of the cylist?
First break vector B into scalar components using unit vectors. Since the angle is west of north, the opposite side of the angle corresponds to the negative x -axis. Therefore, the sine function is used to determine the x -component. The vector is pointing in the positive y -direction and this side corresponds to the adjacent side of the angle. Therefore, cosine is used for the y-component.

$$
\begin{aligned}
\vec{B} & =\left\{-10.0 \sin \left(20^{\circ}\right) \hat{i}+10.0 \cos \left(20^{\circ}\right) \hat{j}\right\} \mathrm{km} \\
\vec{B} & =\{-3.42 \hat{i}+9.40 \hat{j}\} \mathrm{km}
\end{aligned}
$$

Adding the vectors together gives

$$
\begin{aligned}
\vec{r} & =\vec{A}+\vec{B}+\vec{C} \\
\vec{r} & =5.0 \hat{i} \mathrm{~km}+\{-3.42 \hat{i}+9.40 \hat{j}\} \mathrm{km}-8.0 \hat{i} \mathrm{~km} \\
\vec{r} & =\{-6.42 \hat{i}+9.40 \hat{j}\} \mathrm{km}
\end{aligned}
$$

The magnitude of this vector is

$$
r=\sqrt{r_{x}^{2}+r_{y}^{2}}=\sqrt{(-6.42)^{2}+(9.40)^{2}}=11.4 \mathrm{~km}
$$

The angle of travel is

$$
\theta=\tan ^{-1}\left(\frac{r_{y}}{r_{x}}\right)=\tan ^{-1}\left(\frac{9.40 \mathrm{~km}}{-6.42 \mathrm{~km}}\right)=-55.7^{\circ}
$$

Since the x-component is negative and the y-component positive, the vector should be in the 2 nd quadrant, not the 4 th. Add 180° and the answer is

$$
\theta=-55.7^{\circ}+180^{\circ}=124.3^{\circ}
$$

If you want to express this angle with regard to the geography, then it is 56° north of west or 34° west of north.

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

