Chapter 2 Problem $66{ }^{\dagger}$

Given

$\vec{D}=\{2.0 \hat{i}-4.0 \hat{j}+\hat{k}\} N$
$\vec{G}=\{3.0 \hat{i}+4.0 \hat{j}+10.0 \hat{k}\} N$

Solution

Show that the two force vectors are orthogonal.
If something is orthogonal, it means their directions are 90° away from each other. Now we know that the polar form of the dot product is

$$
\vec{D} \cdot \vec{G}=\|\vec{D}\|\|\vec{G}\| \cos \theta
$$

In Cartesian form using unit vectors, you get

$$
\vec{D} \cdot \vec{G}=D_{x} G_{x}+D_{y} G_{y}+D_{z} G_{z}
$$

Setting these equal to each other, we get

$$
\|\vec{D}\|\|\vec{G}\| \cos \theta=D_{x} G_{x}+D_{y} G_{y}+D_{z} G_{z}
$$

If the vectors are orthogonal, then $\theta=90^{\circ}$ and $\cos \theta=\cos 90^{\circ}=0$. Therefore, the right side of the equation must also equal zero. Performing the dot product in cartesian coordinates gives

$$
D_{x} G_{x}+D_{y} G_{y}+D_{z} G_{z}=(2.0)(3.0)+(-4.0)(4.0)+(1.0)(10.0)=6-16+10=0
$$

Since the dot product equals zero, the two vectors are orthogonal.

[^0]
[^0]: ${ }^{\dagger}$ Problem from University Physics by Ling, Sanny and Moebs (OpenStax)

