Chapter 9 Problem $36{ }^{\dagger}$

Given

Three equal masses
$\vec{r}_{1}=\left\{\left(3 t^{2}+5\right) \hat{i}\right\}$
$\vec{r}_{2}=\{(7 t+2) \hat{i}+2 \hat{j}\}$
$\vec{r}_{3}=\{(3 t) \hat{i}+(2 t+6) \hat{j}\}$

Solution

a) Find the position of the center of mass.

Assume that each of the masses have a value of 1 kg . Then the total mass is

$$
M=3 \mathrm{~kg}
$$

The position of the center of mass is then

$$
\begin{aligned}
\vec{R} & =\frac{\Sigma m_{i} \vec{r}_{i}}{M}=\frac{m \Sigma \vec{r}_{i}}{M} \\
\vec{R} & =\frac{(1 \mathrm{~kg})\left(\left\{\left(3 t^{2}+5\right) \hat{i}\right\}+\{(7 t+2) \hat{i}+2 \hat{j}\}+\{(3 t) \hat{i}+(2 t+6) \hat{j}\}\right)}{3 k g} \\
\vec{R} & =\left\{\left(t^{2}+\frac{10}{3} t+\frac{7}{3}\right) \hat{i}+\left(\frac{2}{3} t+\frac{8}{3}\right) \hat{j}\right\}
\end{aligned}
$$

b) Find the velocity of the center of mass.

From the position of the center of mass, take the first derivative wrt. time and get the velocity.

$$
\begin{aligned}
\vec{V} & =\frac{d \vec{R}}{d t}=\frac{d\left\{\left(t^{2}+\frac{10}{3} t+\frac{7}{3}\right) \hat{i}+\left(\frac{2}{3} t+\frac{8}{3}\right) \hat{j}\right\}}{d t} \\
\vec{V} & =\left\{\left(2 t+\frac{10}{3}\right) \hat{i}+\left(\frac{2}{3}\right) \hat{j}\right\}
\end{aligned}
$$

c) Find the acceleration of the center of mass.

From the velocity of the center of mass, take the first derivative wrt. time and get the acceleration.

$$
\begin{aligned}
& \vec{A}=\frac{d \vec{V}}{d t}=\frac{d\left\{\left(2 t+\frac{10}{3}\right) \hat{i}+\left(\frac{2}{3}\right) \hat{j}\right\}}{d t} \\
& \vec{A}=2 \hat{i}
\end{aligned}
$$

