Chapter 7 Problem $52{ }^{\dagger}$

Given

$U=a x^{2}-b x+c$
$a=5.20 \mathrm{~N} / \mathrm{m}$
$b=3.12 \mathrm{~N}$
$c=0.468 J$

Solution

a) Find the equilibrium point of the spring.

The equilibrium point will be where there is no force exerted by the spring. The force of the spring in the x direction is

$$
\begin{equation*}
F_{x}=-\frac{d U}{d x}=-\frac{d\left(a x^{2}-b x+c\right)}{d x}=-2 a x+b \tag{1}
\end{equation*}
$$

Set the F_{x} equal to zero and solve for x .

$$
\begin{aligned}
& 0=-2 a x+b \\
& x=\frac{b}{2 a}
\end{aligned}
$$

Substitute in the appropriate values for a and b gives

$$
a=\frac{(3.12 \mathrm{~N})}{2(5.20 \mathrm{~N} / \mathrm{m})}=0.30 \mathrm{~m}=30 \mathrm{~cm}
$$

b) Find the spring constant.

From Hooke's law the force of the spring is

$$
F=-k \Delta x=-k\left(x-x_{0}\right)
$$

Getting equation (1) into this form gives

$$
F_{x}=-2 a x+b=-2 a\left(x-\frac{b}{2 a}\right)
$$

Therefore, $k=2 a$. Substituting in the appropriate value gives

$$
k=2(5.20 \mathrm{~N} / \mathrm{m})=10.4 \mathrm{~N} / \mathrm{m}
$$

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

