Chapter 7 Problem $39{ }^{\dagger}$

Given

$\theta=30^{\circ}$
$m=16,000 \mathrm{~kg}$
$v_{i}=110 \mathrm{~km} / \mathrm{h}=30.6 \mathrm{~m} / \mathrm{s}$

Solution

Find the distance along the ramp that the truck travelled.
The initial kinetic energy is $\frac{1}{2} m v^{2}$ and let the initial potential energy be zero. The increase in potential energy is $m g y$ and the final kinetic energy is zero since the truck will come to a halt. Using the conservation of mechanical energy we get

$$
\begin{align*}
& K_{i}+U_{i}=K_{f}+U_{f} \\
& \frac{1}{2} m v^{2}+0=0+m g y \\
& \frac{1}{2} m v^{2}=m g y \tag{1}
\end{align*}
$$

Since we want the distance along the ramp, we can replace y with the following trigonometric relationship $\sin \theta=\frac{y}{l}$, therefore,

$$
\begin{equation*}
y=l \sin \theta \tag{2}
\end{equation*}
$$

Substituting equation (2) into (1) gives

$$
\frac{1}{2} m v^{2}=m g l \sin \theta
$$

Solving for l gives

$$
\begin{aligned}
& l=\frac{m v^{2}}{2 m g \sin \theta}=\frac{v^{2}}{2 g \sin \theta} \\
& l=\frac{(30.6 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \sin \left(30^{\circ}\right)}=95.5 \mathrm{~m}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

